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SUCTION AND BLOWING

M.H. LIN* AND G.J. HWANG1

Department of Power Mechanical Engineering, National Tsing Hua Uni6ersity, Hsinchu 30043, Taiwan,
Republic of China

SUMMARY

This paper presents a numerical prediction of the formation of Goertler vortices on a concave surface
with suction and blowing. Suction stabilizes the boundary layer flow on the surface, whereas blowing
destabilizes the flow. The criterion on the position marking the onset of Goertler vortices is defined in the
present paper. For facilitating the numerical study, the computation is carried out in the transformed
x–h plane. The results show that the onset position characterized by the Goertler number depends on the
local suction/blowing parameter, the Prandtl number and the wavenumber. The value of the critical
Goertler number increases with the increase in suction, while the value of the Goertler number decreases
with the increase in blowing. Both the experimental and the numerical data can be correlated by
Gu*=10.2(a %u)*3/2 without suction and blowing and by a simple relation G*x = (G*x )g=0 e−g with suction
and blowing. The obtained critical Goertler number and wavenumber are in good agreement with the
previous experimental data. Copyright © 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The study of Goertler vortices on a concave wall with the effects of suction and blowing is of
practical significance for its engineering applications. The vortex instability is induced by the
centrifugal force normal to the surface. This situation is analogous to the occurrence of
longitudinal vortices in a boundary layer flow on a heated horizontal flat plate, where a
buoyancy force normal to the wall is induced. The studies on the Goertler vortices were
reviewed by Herbert [1] and Floryan [2]. Only a few studies on the Goertler vortices with the
effect of blowing/suction were performed by Kobayashi [3] and Floryan and Saric [4]. By
reviewing the criteria of the onset of the longitudinal vortices in boundary layer and channel
flows, the experimental and numerical methods employed in the literature for determining the
onset position were summarized in Hwang and Lin [5].

It is noted that the numerical and experimental investigations in the literature on the onset
of Goertler vortices with the effect of suction/blowing are rather limited and incomplete. This
current study was motivated by a desire to explore the extent of destabilization/stabilization of
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the Blasius flow on a concave surface for the formation of Goertler vortices with the effect of
suction/blowing. The experimental criteria proposed by Hwang and Lin [5], marking the onset
of longitudinal vortices, were employed in the present study. The Blasius-type basic flow with
X−1/2 varying suction/blowing model is employed. The governing parameters for the effect of
suction/blowing on the onset of Goertler vortices are the Prandtl number, the wavenumber a
and the local suction/blowing parameter g. In the computation, the magnitudes of the applied
initial disturbance velocity with an amplitude of u0=10−3, and the local blowing/suction
parameter g=0.5 to −1.0 are employed.

2. THEORETICAL ANALYSIS

Consider a laminar Blasius flow on a concave wall with a free stream velocity U�. As shown
in Figure 1, the physical curvilinear co-ordinates are chosen such that X measures the
streamwise distance from the leading-edge of the concave wall, Y is the distance normal to the
wall, and Z is in the transverse direction. The present study assumes constant fluid thermo-
physical properties, a large radius of curvature R of a concave wall and a large Reynolds
number. The basic flow and energy equations in similarity forms f§+ ff ¦/2=0 and ub¦+
Prfub/2=0 can be found readily in many texts, where f(h)=c(nXU�)−1/2, ub(h)= (T−T�)/
(Tw−T�) and h=Y(nX/U�)−1/2. The similarity solutions of the basic quantities will be used
to compute the solution of perturbation equations. The Blasius equation can be extended to
the case for a small wall velocity, �Vw��U�, where Vw is a negative (suction) or positive
(blowing) normal velocity. For similarity reasons, only a certain type of Vw(X) is allowed. The
wall velocity is Vw= − f(0)
nU�/X/2 at h=0. Therefore, the wall suction/blowing varying
with X−1/2 can be simulated by a non-zero value of the Blasius streamfunction f at h=0, i.e.

Figure 1. Physical configuration (a) and curvilinear co-ordinate system (b).
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g=
Vw

U�
ReX

1/2= − f(0)/2 or f(0)= −2g. (1)

The other boundary conditions are f %(0)=ub(0)−1= f %(�)−1=ub(�)=0.
In the region near or upstream of the onset position x*, the disturbances of longitudinal

vortex-type are small and the non-linear terms in the momentum and energy equations may be
linearized. Furthermore, in the experiments (Tani [6], Wortmann [7], Bippes [8], Winoto et al.
[9], Swearingen and Blackwelder [10] and Peerhossaini and Wesfreid [11]), ‘stationary’ longitu-
dinal vortex rolls have been found periodic with a wavelength l in the transverse direction Z.
Therefore, the disturbances superimposed on the two-dimensional basic flow quantities can be
expressed as

F(X, Y, Z)=Fb(X, Y)+F %(X, Y) exp(ia %Z),

W(X, Y, Z)=w %(X, Y)i exp(ia %Z), (2)

where F=U, V, P or T ; f %=u %, 6%, p % or t %. a %=2p/l is the dimensional transverse
wavenumber of the vortex rolls. By considering the vortex-type perturbation quantities in the
continuity equation, a different expression for W is used. Substituting Equation (2) into the
continuity, Navier–Stokes and energy equations in curvilinear co-ordinates, and subtracting
the two-dimensional basic flow and energy equations under the assumptions of Re�1 and
R�1, one can obtain the linearized perturbation equations.
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where 92= ((2/(Y2)−a %2 is a two-dimensional Laplacian operator. The perturbation equa-
tions are two-dimensional and of boundary layer flow type.

Next, one introduces the following dimensionless variables and parameters:

X=Rx, [Y Z ]=R Re−1/2[y z ], [Ub u %]=U�[ū u ],

[Vb 6% w %]=U�Re−1/2[6̄ 6 w ], [Tb−T� t %]= (Tw−T�)[ub t ],

p %=
rU�2

Re
p, a %=

Re1/2

R
a, Re=

U�R
n

, (8)

and a vorticity function in the axial direction

j=
(w
(y

−
(6

(z
=
(w
(y

−a6. (9)

To obtain an equation for the vorticity, one may differentiate Equations (5) and (6) by z and
y respectively, and then eliminate the pressure terms by subtracting one from the other. To
derive an equation for 6, one may differentiate Equation (9) with respect to z. Similarly, an
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equation for w can be obtained by differentiating Equation (9) by y. It is noted that, in the
derivation of equations for 6 and w, the continuity equation (3) must be considered. By using
also the similarity variable h=y/
x, the perturbation equations in the h–x plane are found.
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The above equations are in the x–h plane instead of the x–y plane. The h-axis covers all the
variations of the main flow in the x–y plane and probably covers most of the variation of
perturbation quantities. Therefore, the computer time for solving Equations (10)–(14) may be
much shorter than that for equations in the x–y plane. The set of Equations (5)–(9) is a
boundary value problem in the h-direction, an initial value problem in the x-direction, and an
eigenvalue problem in the z-direction. This type of formulation and approach completely
abandons the conventional approach in seeking an undefined solution with a fixed zero or
other finite values of x derivatives. The growth of magnitude of longitudinal vortices is part of
the solution. The appropriate initial condition and boundary conditions of the perturbations
equations are

u=6=w= t=0
u=6=w= t=j=0
u−u0=6=w=j= t=0

at h=0,
at h=0,
at x=0.

(15)

For simplicity, the initial amplitude function u0 is set uniform, and the other two velocity
components 6 and w are set to zero. However, the magnitudes of the velocities 6 and w will be
generated in the next x steps. The range of the initial amplitude function, u0=10−3 is used in
the present study. In the experiment of Swearingen and Blackwelder [10], the free stream
turbulence level in their well-controlled wind tunnel was less than 0.07%, corresponding to the
perturbation velocity u with a magnitude between 10−4 and 10−3.

Equations (10)–(14) and boundary conditions (15) in the x–h plane are for unknowns u, t,
j, 6 and w with two fixed values of a and Re. By giving a series value of a, the largest
amplification of the perturbation quantities along the x-direction determines the value of
critical wavenumber a*. One can see that the term −2xaRe1/2f %u on the right-hand side of
Equation (12) may be expressed as −2(x1/2a)(xRe)1/2f %u, in which (x1/2a) is the dimensionless
wavenumber defined by using the local boundary layer thickness, and xRe=U�X/6 is the
local Reynolds number. The radius of curvature does not appear explicitly in Equations
(10)–(14). One may prove analytically the homogeneity of R in Equations (10)–(14) by
considering the dimensionless transformations (8), i.e. 6�R1/2, w�R1/2, x�R1/2, y�R1/2,
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z�R1/2 and j�R (variables of u, h and f are independent of R). In the computation, the
selection of Re does not change the local critical Reynolds number (xRe)* and the critical
wavenumber (x1/2a)*. This is also proved by using several values of Re in the computation.
For the present study, Re1/2=250 is used for demonstrating the results.

The local friction factor and the local Nusselt number of the basic and perturbed flows can
be also expressed respectively as

CfX=Cfb+Cfp=
twb+twp

1
2rU�2

=2 ReX
−1/2� f ¦(0)+

(u
(h

)
w

n
, (16)
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k
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−1/2�u %b(0)+
(t
(h

)
w

n
, (17)

where tw and h are the local wall shear stress and local heat transfer coefficient respectively;
the subscripts b and p indicate the basic and perturbed flows, and k is the fluid thermal
conductivity. It is noted that the NuX is based on the thermal boundary condition of constant
wall temperature.

3. NUMERICAL PROCEDURE

A finite difference scheme based on the weighting function of Lee [12] with second-order
accuracy in both h and x is used. The step-by-step procedure is listed as follows:

1. Assign Pr and g to obtain the basic flow and temperature distributions. The value of Pr is
0.7 and the values of g are 0, 90.2 90.3 90.4, 90.5 and −1.0 in the present study.

2. Assign Re1/2=250, zero initial values of 6, w, j and t, initial velocity at the leading-edge,
u0=10−3 and various values of wavenumber a.

3. Solve Equations (10)–(12) for u, t and j distributions at the next x step. Values of j on the
boundary are evaluated with previous iteration data of 6 and w in the interior region.

4. Solve Equations (13) and (14) for 6 and w with the obtained u and j.
5. Repeat steps 3 and 4, until the perturbation quantities meet the convergence criteria at the

streamwise position

Max
��Fi, j

(n+1)�− �Fi, j
(n)�

�Fi, j
(n+1)�

�
510−5,

where Fi, j
(n) are the perturbation quantities u, 6, w, t and j of nodal point (i, j ) at the nth

iteration.
6. Calculate the local friction factor and the local Nusselt number of the vortex flow.
7. Repeat steps 3–6 at the next mainstream position until a desired mainstream position is

reached.
8. The absolute values of perturbation quantities are growing along the mainstream direction.

One can find the mainstream position marked with the subscript i, where the flow
visualization onset criterion Yi=	X*

0 Max�6%�(dX/U�)=2 mm or yi=	X*
0 Maxj �6 i, j

(n)� dx=
0.002 is satisfied, where Yi is the detectable height of the vortex spike. Various onset
positions xcr can be determined for different values of wavenumber a. The minimum xcr,
denoted by x*, is the most probable onset position and the corresponding wavenumber is
denoted by a*. The local critical Goertler number is G*x =2x*Re1/2 and the local
wavenumber is a*x*1/2 for this computation.
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Table I. Grid size test for Re1/2=250, a*=1.34, Pr=0.7 and g=0

Dx Dh x

0.1 0.2 0.3 0.4 0.5

0.02 0.01437a 0.04952 0.24130.002 1.733 16.05
0.002 0.01 0.01437 0.04952 0.2412 1.732 16.04

0.020.001 0.01431 0.04942 0.2408 1.730 16.02

a These are the maximum values of the mainstream velocity u/0.01 at the specified x
position.

The grids tested for various Dx and Dh are listed in Table I. A grid size of Dx=0.002,
Dh=0.02 and h�=10 is used to perform the numerical experiment in this study. To check the
validity of the linear Equations (10)–(14), the order of magnitude of non-linear terms of
perturbation equations near the onset position are checked. The calculated data are substituted
into the individual terms of the x momentum equation. The orders of the non-linear terms is
two orders of magnitude smaller than the order of linearized inertia terms. Therefore, the
linear theory is valid for the estimation of the onset of Goertler vortices.

4. RESULTS AND DISCUSSION

The typical development of the dimensionless perturbation amplitudes u, 6, w and t at x=0.35,
0.4, 0.45 and 0.5 for Pr=0.7, Re1/2=250, a*=1.34 and g=0 is shown in Figure 2. The
magnitudes of 6 and w are larger than those of u and t because the scaling factor Re−1/2 is
included in these quantities. As shown in Equation (2), the profiles for u, 6 and t correspond
to the perturbation amplitude along z=0 only, while the profile for w is along z=p/2a. The
transverse perturbation velocity amplitude w behaves like a sine function in the h-direction.
Along z=0, the negative perturbation velocity 6 causes a negative perturbation temperature t
and a positive perturbation velocity u. The shapes of the 6 and w profiles may be regarded as
a vortex pattern. This figure also presents the development of the perturbation amplitude
quantities in the streamwise direction. It is seen that the perturbation amplitude quantities are
very small at x50.35, and increase rapidly along the streamwise direction at x]0.4.

Figure 3 depicts the dimensionless perturbation amplitude functions at x=0.3, 0.35 and 0.4,
with wall suction g= −0.5. It is seen that the values of perturbation amplitude functions are
decreased with the stabilizing effect of a negative g. It is also observed in this figure that the
profiles of the perturbation amplitude functions are shrunk to a smaller h region due to the
suction effect. In contrast, as shown in Figure 4, the values of the perturbation function are
increased, and the sizes of the function are enlarged to a larger h region with a positive g.

The variations of velocity boundary layer thickness dReX
1/2/X with the parameter Gx are

shown in Figure 5. One obtains Gx by using Gx=2(X/R)ReX
1/2=2x3/2Re1/2. The local Goertler

number Gx is varying with x3/2 along the mainstream direction. It is seen that dReX
1/2/X=5.0

is for zero blowing and suction, dReX
1/2/X\5.0 is for blowing, and dReX

1/2/XB5.0 is for
suction. It is noted that the onset of vortices in the boundary layer is not associated with any
immediate increase in the thickness of the boundary layer. However, further downstream from
the onset point, a sharp increase in the boundary layer thickness is observed. A similar trend
is also observed in experiments by Swearingen and Blackwelder [10]. The turbulent boundary
layer thickness based on the one-seventh power-law velocity profile for a flat plate (White [13])

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1281–1295 (1999)
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Figure 2. Development of the perturbation amplitude profiles at specified x positions for g=0 (Pr=0.7, Re1/2=250
and a*=1.34).

d/X:0.16ReX
−1/7 or dReX

1/2/X:0.16ReX
5/14=0.16[(GX Re/2)2/3]5/14, (18)

is also shown for comparison. The boundary layer thickness is thicker, and thus the flow is
more unstable when the effect of blowing is applied, and 6ice 6ersa. It is noted that the theory
predicts a smaller boundary layer growth rate than that of Swearingen and Blackwelder [10].
This may be because of the elimination of the non-linear terms and the interaction between the
flows inside and outside of the boundary layer.

It is also interesting to study numerically the variations of friction factor and heat transfer
coefficient after the onset of Goertler vortices. The variations of local CfX=Cfb+Cfp and
NuX=Nub+Nup along the axial direction at z=0 are shown in Figure 6(a) and (b)
respectively. The friction factor coefficient for the turbulent boundary layer flow based on the
one-seventh power-law velocity profile (White [13]) is

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1281–1295 (1999)
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Figure 3. Development of the perturbation amplitude profiles at specified x positions for g= −0.5 (Pr=0.7,
Re1/2=250 and a*=1.34).

CfX:0.027ReX
−1/7 or CfXRe1/2:0.027ReX

5/14=0.027[(GX Re/2)2/3]5/14, (19)

and the correlation equation for turbulent forced convection (Bejan [14]) is

NuX=0.0296ReX
4/5Pr1/3 or

NuXPrX
−1/2ReX

1/2=0.0296ReX
3/10=0.0296[(GX Re/2)2/3]3/10. (20)

The friction factor and the Nusselt number are also shown for comparison. The gradients of
the velocity and the temperature at the wall start to deviate from the laminar forced convection
downstream of x*. This is due to the secondary longitudinal vortex flow on the heated concave
wall. The effects of suction/blowing on Goertler vortices are more pronounced when the values
of local suction/blowing parameter g are decreased/increased. The critical values of G*X and the
local critical wavenumber a*x*1/2 may be converted to Gu* and a %*u respectively by the
following transformations:

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1281–1295 (1999)
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Figure 4. Development of perturbation amplitude profiles at specified x positions for g=0.5 (Pr=0.7, Re1/2=250
and a*=1.34).

G*u=
U�u

n

'u

R
= [(0.664)3G*X/2]1/2 and (a %u)*=

�2p

l

0.664X
ReX

1/2

�*
=0.664(ax1/2)*, (21)

where the momentum thickness u=0.664X/ReX
1/2. Furthermore, by eliminating the momentum

thickness u between the parameter Gu and the wavenumber a %u, we may obtain the relation

Gu

(a %u)3/2=U�n−1R−1/2(a %)−3/2=Re1/4/a3/2=K or Gu=K(a %u)3/2. (22)

Experimental results (Tani [6], Wortmann [7], Bippes [8], Winoto et al. [9], Winoto and Crane
[15], Swearingen and Blackwelder [10] and Peerhossaini and Wesfreid [11], etc.) indicate that
the wavelengths of the longitudinal vortices are kept constant in the downstream of onset
positions. The growth of the vortices with constant wavelength can be shown by straight lines
of gradient 3

2 on a logarithmic scale in Figure 4 of Tani [6]. It is noted that the value K can be

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1281–1295 (1999)
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Figure 5. Development of boundary layer thickness.

determined by the assigned Re, and the obtained wave number a. For Re1/2=250 and
a=1.34, K=10.2 is calculated.

As shown in Figure 7 of Hall [16], the theoretical critical wavenumber is seen to be three
times larger than that from the experimental data of Tani [6]. By considering Equation (22)
and keeping constant G*u , one may modify the data of (a %u) in experiments by the following
transformations:

(a %u)mod=
(a %u)r

(a %u)exp

(a %u)exp=
�lexp

lr

�� nr

nexp

�2/3�Uexp

Ur

�2/3� Rr

Rexp

�1/3

(a %*u)exp or

(a %u)mod=
�Reexp

Rer

�1/6 ar

aexp

(a %u)exp, (23)

where the subscripts mod, r and exp denote modified, reference and experimental conditions
respectively. For example, Ur=1 m s−1, Rr=1 m, 6r=1.56×10−5 m2 s−1 (air at 20°C and
atmospheric pressure), and lr=1.85 cm, are set in the present study. Figure 7 summarizes the
results of the present and the previous works for the onset of longitudinal vortices on a
concave wall. It is seen that there is at least one order of magnitude difference between

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1281–1295 (1999)
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Figure 6. Friction factor and Nusselt number for g=0, 90.2 and 90.5.

experimental data of the critical Goertler number and those of the theoretical predictions by
using zero x derivative (Goertler [17], Smith [18], Floryan and Saric [19], etc.). However, Hall
[16] used the criterion of energy method on a concave wall by considering x-dependence
derivatives terms. The results of the critical Goertler number predicted by the present study are
close to the experimental data. Furthermore, by using the modified (a %u)mod, all the experimen-
tal data, including two air data and two water data, and covering the range of Uexp=0.0325–
16 m s−1 and Rexp=0.11–10 m are correlated by the theoretical relation G*u =10.2(a %u)*3/2 to
within an error of 910%.

The effect of the suction/blowing parameter g on the critical Goertler number G*X is listed in
Table II. It is observed from the data that an increase in the suction rate g from 0 to −1.0
is to increase up to 2.5 times the value of the critical Goertler number G*X. While an increase
in the blowing rate g from 0 to 0.5 is to decrease G*X by 0.56 times. The numerical results can
be correlated by a simple relation G*X= (G*X)g=0 e−g, as shown in Figure 8.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1281–1295 (1999)
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Figure 7. The relation between the critical values Gu* and wave number a %*u.

In the above analysis, three sets of parameters are used. The three sets of parameters are
summarized and discussed as follows. First of all, x* and a* are sought by using fixed Pr and
Re. Secondly, x* and a* are converted to G*X and a*x*1/2. Finally, G*u and (a %u)* are used.
The first set of parameters, mainly comes from the length-scale of radius of curvature. The
second set of parameters considers the centrifugal force to viscous force ratio and boundary
layer thickness. The third set of parameters is derived from the momentum thickness.

5. CONCLUSIONS

(1) The effects of blowing and suction on the destabilization and stabilization of the Blasius
flow on a concave surface for the formation of Goertler vortices are studied numerically by
using an experimental criterion and an x−1/2 varying blowing and suction model.

Table II. Onset position x* for the criterion yi=	0
X* Maxj �6 i, j

(n)� dx=0.002

g x* G*X a*x*1/2

18.20.110 0.4440.5
0.4 0.116 19.8 0.456

0.47221.80.1240.3
24.50.134 0.4910.2

0.1620.0 32.6 0.539
−0.2 0.179 38.0 0.567

42.00.192−0.3 0.587
51.00.218−0.5 0.626
82.0 0.7350.301−1.0

These values are evaluated by using Re1/2=250, a*=1.34, Pr=0.7 and u0=10−3.

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1281–1295 (1999)
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Figure 8. Correlation of theoretical values of G*x.

(2) An increase in the suction rate g from 0 to −1.0 is to increase, by up to 2.5 times, the
value of the critical Goertler number G*X, while an increase in the blowing rate g from 0 to 0.5
is to decrease G*X by 0.56 times. Both the experimental and numerical data can be also
correlated by G*u =10.2(a%u)*3/2 for g=0 and by a simple relation G*X= (G*X)g=0 e−g for g"0.
(3) The effect of boundary layer growth, the friction factor and the Nusselt number with the
g are also examined. The onset of vortices in the boundary layer flow is not associated with an
immediate increase in the rate of boundary layer growth, local friction factor and Nusselt
number. However, further downstream from the onset point, a sharp increase is observed.
Thus, the boundary layer thickness, friction factor and Nusselt number are less sensitive to the
onset of longitudinal vortices.
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APPENDIX A. NOMENCLATURE

a %, a dimensional and dimensionless wavenumber, a %=aRe1/2/R
friction factor, 2tw/rU�2Cf

reduced streamfunction, c(nXU�)−1/2f
F velocity, pressure or temperature function

local Goertler number, 2XReX
1/2/RGX

local heat transfer coefficienth
p %, p dimensional and dimensionless pressure, p %=rU2

�p/Re
Prandtl number, n/aPr
local Nusselt number, hX/kNuX
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radius of curvature (m)R
Reynolds number based on radius of curvature, U�R/nRe
local Reynolds number, U�X/nReX

temperature (K)T
dimensional and dimensionless perturbation temperature, t %= (Tw−T�)tt %, t
dimensional velocity components (m s−1)U, V, W

u, 6, w dimensionless perturbation velocity components
perturbation velocity componentsu %, 6%, w %
initial constant perturbation velocity at x=0u0

Cartesian co-ordinates (m)X, Y, Z
dimensionless Cartesian co-ordinates as defined in (8)x, y, z

Greek letters

boundary layer thickness (m)d

c streamfunction (m2 s−1)
local suction/blowing parameter, VwReX

1/2/U�g

Blasius similarity variable, Y/(nX/U�)1/2h

l wavelength in Z-direction (m)
kinematic viscosity of fluid (m2 s−1)n

momentum thickness, 0.664X/ReX
1/2u

ub dimensionless basic temperature, (T−T�)/(Tw−T�)
local wall stresst

vorticity function in the X-direction defined in (9) (s−1)j

Superscripts

onset position*

Subscripts

basic flow quantityb
experimental valueexp
perturbation quantityp
referencer

w wall condition
local co-ordinateX
momentum thicknessu

� free stream condition
modified valuemod

REFERENCES

1. T. Herbert, ‘On the stability of boundary layer along a concave wall’, Arch. Mech., 28, 1039–1055 (1976).
2. J.M. Floryan, ‘On the Goertler instability of boundary layers’, Prog. Aerosp. Sci., 28, 235–271 (1991).
3. K. Kobayashi, ‘Note on the stability of a boundary layer on a concave wall with suction’, J: Fluid Mech., 52,

269–272 (1972).
4. J.M. Floryan and W.S. Saric, ‘Effect of suction on the Goertler instability of boundary layers’, AIAA J., 21,

1635–1639 (1983).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1281–1295 (1999)



GOERTLER VORTICES ON A CONCAVE SURFACE 1295

5. G.J. Hwang and M.H. Lin, ‘Estimation of the onset of longitudinal vortices in a laminar boundary layer heated
from below’, ASME J. Heat Transf., 117, 835–842 (1995).

6. I. Tani, ‘Production of longitudinal vortices in the boundary layer along a concave wall’, J. Geophys. Res., 67,
3075–3080 (1962).

7. F.X. Wortmann, ‘Visualization of transition’, J. Fluid Mech., 38, 473–480 (1969).
8. H. Bippes, ‘Experimental study of the laminar–turbulent transition of a concave wall in a parallel flow’, NASA,

TM-75243, 1978.
9. S.H. Winoto, D.F.G. Durao and R.I. Crane, ‘Measurements within Goertler vortices’, ASME J. Fluids Eng., 101,

517–520 (1979).
10. J.D. Swearingen and R.F. Blackwelder, ‘The growth and breakdown of streamwise vortices in the presence of a

wall’, J. Fluid Mech., 182, 255–290 (1987).
11. H. Peerhossaini and J.E. Wesfreid, ‘On the inner structure of streamwise Goertler rolls’, Int. J Heat Fluid Flow,

9, 12–18 (1988).
12. S.L. Lee, ‘Weighting function scheme and its application on multidimensional conservation equations’, Int. J.

Heat Mass Transf., 32, 2065–2073 (1989).
13. F.M. White, Viscous Fluid Flow, 2nd edn., McGraw-Hill, New York, 1991.
14. A. Bejan, Heat Transfer, 1st edn., Wiley, New York, 1993.
15. S.H. Winoto and R.I. Crane, ‘Vortex structure in laminar layers on a concave wall’, Int. J. Heat Fluid Flow, 2,

221–231 (1980).
16. P. Hall, ‘The linear development of Goertler vortices in growing boundary layers’, J. Fluid Mech., 130, 41–58

(1983).
17. H. Goertler, ‘Instabilitat Laminarer Grenzchichten an Konkaven wanden Gengenuber Gewissen Deeidimen-

sionalen Storungen’, ZAMM, 21, 250–252 (1941).
18. A.M.O. Smith, ‘On the growth of Taylor–Goertler vortices along highly concave walls’, Q. J. Appl. Math., 13,

233–262 (1955).
19. J.M. Floryan and W.S. Saric, ‘Stability of Goertler vortices in boundary layers’, AIAA J., 20, 316–324 (1982).

Copyright © 1999 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 31: 1281–1295 (1999)


